3D Imaging of Rapidly Spinning Space Targets Based on a Factorization Method

نویسندگان

  • YanXian Bi
  • Shaoming Wei
  • Jun Wang
  • Shiyi Mao
چکیده

Three-dimensional (3D) imaging of space targets can provide crucial information about the target shape and size, which are significant supports for the application of automatic target classification and recognition. In this paper, a new 3D imaging of space spinning targets via a factorization method is proposed. Firstly, after the translational compensation, the scattering centers two-dimensional (2D) range and range-rate sequence induced by the target spinning is extracted using a high resolution spectral estimation technique. Secondly, measurement data association is implemented to obtain the scattering center trajectory matrix by using a range-Doppler tracker. Then, we use an initial coarse angular velocity to generate the projection matrix, which consists of the scattering centers range and cross-range, and a factorization method is applied iteratively to the projection matrix to estimate the accurate angular velocity. Finally, we use the accurate estimate spinning angular velocity to rescale the projection matrix and the well-scaled target 3D geometry is reconstructed. Compared to the previous literature methods, ambiguity in the spatial axes can be removed by this method. Simulation results have demonstrated the effectiveness and robustness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data Focusing method for Microwave Imaging of Extended Targets

This paper presents a data focusing method (DFM) to image extended targets using the multiple signal classification (MUSIC) algorithm. The restriction on the number of transmitter-receiver antennas in a microwave imaging system deteriorates profiling an extended target that comprises many point scatterers. Under such situation, the subspace-based linear inverse scattering methods, like the MUSI...

متن کامل

Image Compression Method Based on QR-Wavelet ‎Transformation

In this paper, a procedure is reported that discuss how linear algebra can be used in image compression. The basic idea is that each image can be represented as a matrix. We apply linear algebra (QR ‎factorization and wavelet ‎transformation ‎algorithm‏s) on this matrix and get a reduced matrix out such that the image corresponding to this reduced matrix requires much less storage space than th...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

Validation of Optimum ROI Size for 123I-FP-CIT SPECT Imaging Using a 3D Mathematical Cylinder Phantom

Objective(s): The partial volume effect (PVE) of single-photon emission computed tomography (SPECT) on corpus striatum imaging is caused by the underestimation of specific binding ratio (SBR). A large ROI (region of interest) set using the Southampton method is independent of PVE for SBR. The present study aimed to determine the optimal ROI size with contrast and SBR for striatum images and val...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017